Пакет Maple состоит из быстрого ядра, написанного на Си и содержащего основные математические функции и команды, а также большого количества библиотек, расширяющих ее возможности в различных областях математики. Библиотеки скомпонованы из подпрограмм, написанных на собственном языке Maple, специально предназначенном для создания программ символьных вычислений. Наиболее интересные возможности системы Maple — редактирование и изменение этих подпрограмм, а также пополнение библиотек подпрограммами, разработанными для решения конкретных задач. Они уже появились в большом количестве, а лучшие из них вошли в Share-библиотеку пользователей, распространяемую вместе с пакетом Maple.
Программа уже превратилась в мощную вычислительную систему, позволяющую выполнять сложные алгебраические преобразования, в том числе над полем комплексных чисел, вычислять конечные и бесконечные суммы, произведения, пределы и интегралы, находить корни многочленов, решать аналитически и численно алгебраические (в том числе трансцендентные) системы уравнений и неравенств, а также системы обыкновенных дифференциальных уравнений и уравнений в частных производных. В Maple включены специализированные пакеты подпрограмм для решения задач аналитической геометрии, линейной и тензорной алгебры, теории чисел, комбинаторики, теории вероятностей и математической статистики, теории групп, численной аппроксимации и линейной оптимизации (симплекс-метод), финансовой математики, интегральных преобразований и т. п.
Создание новой библиотеки происходит следующим образом.
Прежде всего надо определить имя своей библиотеки, например mylib, и создать для нее на диске каталог (папку) с заданным именем. Процедуры в Maple ассоциируются с таблицами. Поэтому вначале надо задать таблицу-пустышку под будущие процедуры:
> restart;
> mylib:=tab1e():
mylib := table([])
Теперь надо ввести свои библиотечные процедуры. Они задаются с двойным именем — вначале указывается имя библиотеки, а затем в квадратных скобках имя процедуры. Для примера зададим три простые процедуры с именами fl, f2 и f3:
> mylib[fl]:=proc(x: Anything) sin(x)+cos(x) end:
> mylib[f2]:=proc(x:anything) sin(x)^2+cos(x)^2 end:
> mylib[f3]:=proc(x::anything) if x=0 then 1 else sin(x)/x fi end:
Рекомендуется тщательно проверить работу процедур, прежде чем записывать их на диск. Ограничимся, скажем, такими контрольными примерами:
Можно построить графики введенных процедур-функций. Они представлены на С помощью функции with можно убедиться, что библиотека mylib действительно содержит только что введенные в нее процедуры. Их список должен появиться при обращении with (mylib):
> with(mylib);
[f1,f2,f3]
Теперь надо записать эту библиотеку под своим именем на диск с помощью команды save:
> save(mylib,`c:/ mylib.m);
Обратите особое внимание на правильное задание полного имени файла. Обычно применяемый для указания пути знак \ в строках Maple-языка используется как знак продолжения строки. Поэтому надо использовать либо двойной знак \\, либо знак /. В этом примере файл записан в корень диска С. Лучше поместить библиотечный файл в другую папку (например, в библиотеку, уже имеющуюся в составе системы), указан полный путь до нее.
После всего этого надо убедиться в том, что библиотечный файл записан. После этого можно сразу и считать его. Для этого вначале следует командой restart устранить ранее введенные определения процедур:
> restart;
С помощью команды with можно убедиться в том, что этих определений уже нет:
> with(mylib):
Error, (in pacman:-pexports) mylib is not a package
После этого командой read надо загрузить библиотечный файл:
> read('c:/mylib.m');
Имя файла надо указывать по правилам, указанным для команды save. Если все выполнено пунктуально, то команда with должна показать наличие в вашей библиотеке списка процедур fl, f2 и f3:
> with(mylib):
[f1. f2. f3]
И наконец, можно вновь опробовать работу процедур, которые теперь введены из загруженной библиотеки:
> fl(x):
sin(x) + cos(x) > simplify(f2(y});
Прочие статьи:
Связь педагогики с другими гуманитарными науками
Педагогика является самостоятельной наукой. Отделившись в свое время от философии, она не утратила тесной связи с другими гуманитарными науками:
1) философией;
2) психологией;
3) школьной гигиеной;
4) социологией;
5) фольклористикой и этнографией.
Философия выполняет важную методологическую ...
Методы и приемы обучения аппликации в старшей
группе
Основная задача обучения аппликации детей шестого года жизни - овладение разнообразными приемами вырезывания. На занятиях дошкольники изображают предметы, имеющие различные очертания, симметричные и несимметричные формы в статичном положении или с передачей несложного движения.
Опираясь на предст ...
Стритбол шагает по планете
Стритбол – это выращенный из баскетбола отдельный вид спорта, а не просто уличный баскетбол, как было раньше. Креативность и шоу сочетаются с некоторыми баскетбольными правилами, переплетаясь с уличной культурой и хип-хопом.
Самыми яркими и известными представителями стритбола является команда по ...