На первом занятии создают ситуации, при которых возникает необходимость разделить предмет на 2 равные части, например, разделить угощение между 2 куклами или 2 детьми (гостями), помочь 2 жадным медвежатам разделить сыр и т. п. Воспитатель показывает, как надо делить предметы на 2 равные части, т. е. пополам, подчеркивает, что он точно складывает и разрезает предмет посередине, потом сравнивает полученные части, накладывая одну на другую или прикладывая одну к другой. Дети считают части, убеждаются, что они равные. Воспитатель говорит, что любую из 2 равных частей обычно называют половиной. Следующий предмет воспитатель намеренно делит на 2 неравные части и спрашивает: «Можно ли такую часть назвать половиной? Почему нет?» Дети видят, что предметы могут быть разделены как на равные, так и на неравные части. Половиной 1 из 2 частей можно назвать лишь тогда, когда части равны. Постепенно дети убеждаются в том, как важно точно складывать, разрезать предметы, чтобы получились равные части. Выполнив действие, они проверяют (наложением и приложением), равные ли получились части, считают их и, соединив вместе, получают целый предмет, обводят его контур и части рукой, сравнивают размер целого и части.
На втором занятии воспитатель расширяет круг предметов, которые дети делят пополам. Можно использовать крупу, воду. Их распределяют поровну в 2 прозрачных стакана одинаковых размеров. На третьем занятии показывают способы деления предметов на 4 равные части, т. е. пополам и еще раз пополам. Устанавливают отношения между целым и частью: часть меньше целого, целое больше части. Если в подготовительную к школе группу поступило много новых детей целесообразно начать с деления предметов на части путем складывания. Дети получают по 2 предмета одинаковых размеров, в чем они убеждаются, накладывая 1 предмет на другой. Они делят 1 предмет на 2 равные части, другой - на 4. Соединив части вместе, они получают целый предмет, пересчитывают части, показывают 1 из 2 частей, 2 из 2 частей, соответственно 1 (2, 3, 4) из 4 равных частей. Сравнивают размер 1 части и целого. Для обобщения знаний можно использовать схемы деления того или иного предмета на равные части (яблока, круга, квадрата и пр.). Рассматривая с детьми схему, воспитатель спрашивает: «На сколько равных частей сначала разделили яблоко? Сколько получилось таких частей? На сколько равных частей потом разделили яблоко? Сколько получилось частей? Что больше и что меньше: половина или целое яблоко? 2 половины или целое яблоко? 1 из 4 частей (1/4) или половина (1/2)?» и т. д.
На последующих занятиях проводят упражнения в делении геометрических фигур на 2, 4, 8 частей и в составлении целых фигур из частей, например: «Как надо сложить и разрезать квадрат, чтобы получились 2 равных прямоугольника?
В подготовительной к школе группе порядковому счету должно быть уделено большое внимание. У детей расширяют представление о том, в каких случаях люди пользуются порядковым счетом, когда они прибегают к нумерации и с какой целью (нумеруют дома, квартиры, детские сады, места в театре, в кино, транспорте и т. п.).
Для лучшего осознания детьми значения порядкового счета его постоянно сопоставляют с количественным счетом, чередуя вопросы сколько? какой по счету? Продолжают учить детей различать вопросы какой по счету? который? какой? Последний направлен на выделение качественных признаков объектов. Какие задачи решают дети в процессе упражнений в порядковом счёте? Определяют место предмета среди других. («Сколько всего флажков? Какой по порядку синий флажок? Какого цвета восьмой флажок?») Находят предмет по его порядковому номеру, при этом выполняют различные задания. («На место четвертой матрешки поставьте неваляшку. Замените шестой синий кружок красным. Поверните третий квадрат другой стороной вверх. Дайте флажки второму, четвертому и шестому мальчикам».) Располагают предметы в указанном порядке и одновременно определяют пространственные отношения между ними: впереди, после, за, между: «Расставьте игрушки так, чтобы первой была матрешка, второй - неваляшка, третьим - мишка. Поставьте куклу между вторым и третьим номерами .» Задают вопросы: «Какая по счету кукла? А мишка? Сколько всего игрушек? Кто стоит перед неваляшкой? Которая по счету неваляшка?» Целесообразны игры с мячом. Дети выстраиваются шеренгой и пересчитываются. Тот, кому ведущий бросил мяч, называет свой порядковый номер. Порядковый номер может называть ведущий. Например, он говорит: «Шестой!» Ребенок, стоящий на шестом месте, делает шаг вперед, произносит: «Я шестой!» - и ловит мяч.
Прочие статьи:
Педагогическая
деятельность и теория дошкольного воспитания М. Монтессори
В 1900 г. на состоявшейся в Риме своеобразной олимпиаде учащихся начальной школы питомцы Монтессори превзошли детей из обычных школ по письму, счету и чтению. Это было громом среди ясного неба. Результаты многократно проверялись и перепроверялись, однако опровергнуть их было нельзя. "Настоящи ...
Понятие открытой системы, ее свойства
В теории управления можно выделить три основных и наиболее общих подхода: функциональный, процессный, системный и ситуационный.
Согласно функциональному (процессному) подходу управление образовательным учреждением есть совокупность управленческих функций.
В рамках системного подхода (С.И. Арханг ...
Повышение резистентности организма дошкольника к простудным заболеваниям –
основная задача проведения прогулки в ДОУ
Самой большой ценностью человека является здоровье, основа которого закладывается в раннем детстве, поэтому на воспитателей детских учреждений ложится большая ответственность за здоровье подрастающего поколения.
Понятие «болезнь» и «здоровье» тесно связаны между собой. Измерить здоровье и болезнь ...